搜索结果: 1-4 共查到“交通运输工程 SVM”相关记录4条 . 查询时间(0.024 秒)
采用LS-SVM计算时间序列的Lyapunov指数谱
Lyapunov指数谱 最小二乘支持向量机 交通流
2009/12/3
为了计算未知系统的Lyapunov指数谱,首先,对一维观测数据序列进行相空间重构,然后,利用最小二乘支持向量机(LS-SVM)逼近重构系统的动力学方程,再通过雅克比矩阵计算Lyapunov指数谱。采用提出的方法计算Henon映射的Lyapunov指数谱,可以得到精确的计算结果且需要的序列步长小于1 000。计算了实测不同状态的交通流时间序列的Lyapunov指数谱。结果表明:在拥挤状态下,有多个L...
基于ICA和SVM的道路网短时交通流量预测方法
短时交通流量 独立成分分析 支持向量机
2009/9/25
交通流量预测是智能交通系统(ITS)研究的一个重要课题。通过对多个观测点交通流量数据特点进行分析,采用一种基于独立成分分析(ICA)与支持向量机(SVM)相结合的短时交通流量预测方法。首先,通过独立成分分析得到同一条道路上各个观测点的交通流量的独立源信号;接着利用支持向量机预测模型对源信号进行建模和预测,并通过遗传算法(GA)优化参数;最后将其转换为交通流量数据,得到预测结果。实例分析结果显示,该...
基于LS-SVM的交通流时序数据补齐方法
最小二乘支持向量机 时间序列 交通流
2009/7/21
实时、准确的交通流数据是实现智能运输系统(Intelligent Transportation Systems,简称ITS)的关键,对交通流的控制和诱导有直接影响。由于种种原因,通过交通检测器获得的数据往往是不完整的,存在丢失现象,影响了后续模型的实际应用效果。针对这一问题,提出一种基于最小二乘支持向量机 (Least Squares Support Vector Machines,简称LS-SV...