理学 >>> 数学 >>> 代数学 >>> 线性代数 群论 域论 李群 李代数 Kac-Moody代数 环论 模论 格论 泛代数理论 范畴论 同调代数 代数K理论 微分代数 代数编码理论 代数学其他学科
搜索结果: 1-9 共查到代数学 Variety相关记录9条 . 查询时间(0.031 秒)
According to the standard philosophy (cf. Deligne 1994, 3.1), a cohomology theory X 7→ Hi (X, r) on the algebraic varieties over a fixed field k should arise from a functor RΓ taking va...
Consider an absolutely simple abelian variety A defined over a number field K. For most places v of K, we study how the reduction Av of A modulo v splits up to isogeny. Assumingthe Mumford–Tate conjec...
In this note, one discusses about some varieties which are constructed analogously to the isospectral commuting varieties. These varieties are subvarieties of varieties having very simple desingulariz...
Abstract: In the case of an almost simple algebraic group $G$ of type $G_2$ over a field of characteristic $p>0$ we study the cohomology modules of line bundles on the flag variety for $G$. Our main r...
Decomposing an algebraic variety into irreducible or equidimensional components is a fundamental task in classical algebraic geometry and has various applications in modern geometry engineering. Sever...
In 2007, B. Poonen (unpublished) studied the p{adic closure of a subgroup of rational points on a commutative algebraic group. More recently, J. Bellache asked the same question for the special case...
Let M be a commutative monoid. We provide an explicit first-order formular that defines the variety generated by M in the lattice of commutative semigroup varieties.
The aim of this paper is to describe the irregular locus of the commuting variety of a reductive symmetric Lie algebra. More precisely, we want to enlighten a remark of Popov. In [Po], the irregular l...
摘要 By defining a concept of normal chains, an algorithm to decompose algebraicvarieties is presented, and the applications of this algorithm in solving polynomial equationsand primary decomposition of...

中国研究生教育排行榜-

正在加载...

中国学术期刊排行榜-

正在加载...

世界大学科研机构排行榜-

正在加载...

中国大学排行榜-

正在加载...

人 物-

正在加载...

课 件-

正在加载...

视听资料-

正在加载...

研招资料 -

正在加载...

知识要闻-

正在加载...

国际动态-

正在加载...

会议中心-

正在加载...

学术指南-

正在加载...

学术站点-

正在加载...