搜索结果: 1-15 共查到“知识要闻”相关记录321254条 . 查询时间(5.828 秒)

2024年6月8日-6月9日,第十五届中国大学生物理学术竞赛(西北赛区)在兰州大学隆重举办。本次竞赛共有来自西北地区17所高校的45支队伍、222名学生参加。石河子大学派出无懈可击队、星际航行队和理实队三支代表队参赛。经过两天的激烈角逐,最终荣获三个团队一等奖。

近日,中国科学院大连化学物理研究所研究员王峰、副研究员贾秀全团队与中国海洋大学包锐教授团队、大连化物所研究员李海洋团队合作,在微液滴化学研究方面取得新进展。合作团队揭示了在海洋中,微液滴对火成惰性碳的电化学降解与沉降作用。相关成果发表在《美国化学会志》上。
香港天文台与世界气象组织签署更新谅解备忘录
香港天文台 谅解备忘录 世界气象组织 气象合作
2025/3/10
香港天文台3月28日与世界气象组织签署更新谅解备忘录,进一步加强气象合作。香港天文台台长陈栢纬在签署仪式上表示,天文台与世界气象组织的合作关系历史悠久,更新的谅解备忘录可以进一步强化双方的紧密关系。天文台会继续支持世界气象组织的倡议,为落实联合国全民预警倡议作出贡献。
《自然》杂志3月27日发表的一篇论文指出,全球变暖导致的极地融冰增加可能会影响全球计时。格陵兰和南极洲的融冰可能让地球角速度(角度位置随时间变化的速度)减慢的速度比之前更快。为此,协调世界时(UTC)可能比原来晚3年才需要添加一个负“闰秒”。

3月28日中国科学院地球化学研究所通过对嫦娥五号月壤颗粒开展研究,在月壤玻璃珠表面微陨石撞击坑中发现一系列含钛的蒸发沉积颗粒,这是此前未被识别的太空风化产物。
气候变化开始改变人类计时的方式
冰盖 闰秒 地球自转 极冰融化
2025/3/10
气候变化可能对人类计时的方式带来改变。3月27日发表在《自然》上的一篇分析文章预测,融化的冰盖正在使地球自转速度放缓,以至于下一个闰秒——自1972年以来用于协调原子钟的官方时间与基于地球不稳定自转速度的官方时间的机制——将推迟3年。
据吉林省2024年国民经济和社会发展统计公报,初步核算,2024年吉林省实现地区生产总值14361.22亿元,按可比价格计算,比上年增长4.3%。

近日,山东农业大学生命科学学院高峥教授和周波教授团队在期刊《Ecotoxicology and Environmental Safety》发表了题为“Exposure to thiazole pesticides disrupts pathogens and undermines keystone status of rare taxa within bacterial ecological ne...
明清陕西戏曲剧种剧目手抄本古籍保护整理出版是陕西省艺术研究所一个特色研究项目之一,陕西省艺术研究院收藏有老一代戏剧工作者在五十年代,深入全省90多个县(市),走访老艺人、戏剧界同仁收集的明、清两个代流传于陕南、陕北、关中一带的秦腔、汉调桄桄、西府秦腔、同州梆梆子、汉调二黄、跳戏、陕南道清、阿宫、弦板腔、线戏、老腔、华剧、弦子戏、蛮戏、迷胡、越调、八步景、八岔、汉中曲子、端公、大筒子、韩城秧歌戏、关...

中国科学院力学所在低温推进剂空间增压技术研究中取得进展(图)
低温 空间 气体
2025/3/26
空间微重力环境低温推进剂贮箱增压技术是航天器推进系统的一项关键技术,对未来深空探索任务具有至关重要的影响。相比于推进剂自身蒸气增压,利用不可凝、低互溶异质气体对低温推进剂进行增压,优势明显。然而,空间微重力环境导致浮力分层效应被抑制,气液两相分布构型及与重力密切相关的热质传输机制都将呈现与地面常重力环境迥异的特征。这使得基于地面经验的现有认知难以直接拓展应用到空间环境,严重制约着低温推进剂空间增压...

中国科学院力学所在池沸腾传热电场强化研究方向取得进展(图)
流动 环境
2025/3/26
在科技迅猛发展时代,设备功率持续攀升,与此同时,设备体积却逐步缩小。这一增一减,致使对设备的有效热管理技术形成了愈发严峻的挑战。在此背景下,因潜热释放而具有优异传热性能的沸腾传热及其强化技术受到广泛关注。然而,沸腾现象中,液体工质及其蒸气具有巨大的密度差异,重力或浮力对该现象中的气液两相流动与传热具有重要影响,进而导致地面重力环境中不同加热面朝向之间,或空间微/变重力环境与地面常重力环境之间,沸腾...

人们普遍认为,塑性变形意味着整体结构的不可逆变化,从而导致器件的失效。因此,传统柔性电子器件结构设计通常将金属材料的变形限制在弹性范围内。然而,材料科学的各项最新进展显著提高了金属材料的弹塑性性能,使其能够承受更大的弹塑性变形而不会失效。研究表明,柔性电子器件可以被设计为在发生过局部塑性变形后其电气功能依然能够恢复到未变形状态。这种对塑性变形的重新认识,挑战了传统观点,并突显了在柔性电子器件中充分...

中国科学院物理研究所Kagome FeGe中非常规电荷密度波的电荷动力学研究(图)
动力学 金属 光谱
2025/3/26
Kagome晶格材料因其独特的几何阻挫结构、以及拓扑和强电子关联效应,为探索新兴量子现象提供了极具潜力的平台。在这一体系中,研究者已经发现了诸多新奇量子态,如量子自旋液体,狄拉克/外尔费米子,电荷密度波(CDW),电子向列相和非常规超导电性等。这些现象大多与Kagome电子能带具有共存的平带,范霍夫奇点和狄拉克点这一特性有关。通常情况下,Kagome材料的平带与范霍夫奇点之间存在较大的能量间隔,使...

在量子材料中,轨道作为一种关键的自由度,对低能物理现象和独特性质的形成具有重要影响。原子中不同轨道的贡献往往会引发对称性破缺,从而产生诸如强关联材料中的轨道依赖能带重整化、轨道依赖对称性破缺态、轨道选择性莫特转变以及轨道选择性超导配对等现象。例如,笼目超导体AV₃Sb₅(A=K、Rb、Cs)体系是一种多带超导体,展现出一系列丰富而奇异的物性特征,包括Z₂拓扑、对...