搜索结果: 1-4 共查到“Lennard-Jones Potential Well”相关记录4条 . 查询时间(0.083 秒)
Canonical dual theory applied to a Lennard-Jones potential minimization problem
Mathematical Canonical Duality Theory Mathematical Optimization Lennard-Jones Potential Minimization Problem Global Optimization
2011/8/18
Abstract: The simplified Lennard-Jones (LJ) potential minimization problem is $f(x)=4\sum_{i=1}^N \sum_{j=1,jN (\frac{1}{\tau_{ij}^6} -\frac{1}{\tau_{ij}^3}) {subject to} x\in \mathbb{R}^n,$ where...
Canonical dual theory applied to a Lennard-Jones potential minimization problem
Mathematical Canonical Duality Theory Mathematical Optimization Lennard-Jones Potential Minimization Problem Global Optimization
2011/9/21
Abstract: The simplified Lennard-Jones (LJ) potential minimization problem is $f(x)=4\sum_{i=1}^N \sum_{j=1,jN (\frac{1}{\tau_{ij}^6} -\frac{1}{\tau_{ij}^3}) {subject to} x\in \mathbb{R}^n,$ where...
The Lennard-Jones Potential Minimization Problem for Prion AGAAAAGA Amyloid Fibril Molecular Modeling
Lennard-Jones Potential Minimization Problem Lennard-Jones Potential Well van der Waals radii
2011/7/26
The Lennard-Jones Potential Minimization Problem for Prion AGAAAAGA Amyloid Fibril Molecular Modeling.
The Lennard-Jones Potential Minimization Problem for Prion AGAAAAGA Amyloid Fibril Molecular Modeling
Lennard-Jones Potential Minimization Problem, Lennard-Jones Potential Well, van der Waals radii
2011/9/13
The simplified Lennard-Jones (LJ) potential minimization problem is minimize f(x) = 4
N
Xi=1
N
X j=1,j<i 1
τ 6
ij
−
1
τ 3
ij! subject to x 2 Rn,
where τij = (x3i−2−x3j...