搜索结果: 1-6 共查到“统计逻辑学 process”相关记录6条 . 查询时间(0.156 秒)
Dynamic Clustering via Asymptotics of the Dependent Dirichlet Process Mixture
Dynamic Clustering Asymptotics Dependent Dirichlet Process Mixture
2013/6/17
This paper presents a novel algorithm, based upon the dependent Dirichlet process mixture model (DDPMM), for clustering batch-sequential data containing an unknown number of evolving clusters. The alg...
Quantum Annealing for Dirichlet Process Mixture Models with Applications to Network Clustering
Quantum annealing Dirichlet process Stochastic optimization Maximum a posteriori estimation Bayesian nonparametrics
2013/6/17
We developed a new quantum annealing (QA) algorithm for Dirichlet process mixture (DPM) models based on the Chinese restaurant process (CRP). QA is a parallelized extension of simulated annealing (SA)...
A Gaussian Process Emulator Approach for Rapid Contaminant Characterization with an Integrated Multizone-CFD Model
xBayesian Framework Gaussian Process Emulator Multizone Models Integrated Multizone-CFD CONTAM Rapid Source Localization and Characterization
2013/6/14
This paper explores a Gaussian process emulator based approach for rapid Bayesian inference of contaminant source location and characteristics in an indoor environment. In the pre-event detection stag...
MCMC methods for Gaussian process models using fast approximations for the likelihood
MCMC methods for Gaussian process models using fast approximations for the likelihood
2013/6/14
Gaussian Process (GP) models are a powerful and flexible tool for non-parametric regression and classification. Computation for GP models is intensive, since computing the posterior density, $\pi$, fo...
MCMC methods for Gaussian process models using fast approximations for the likelihood
MCMC methods for Gaussian process models using fast approximations for the likelihood
2013/6/14
Gaussian Process (GP) models are a powerful and flexible tool for non-parametric regression and classification. Computation for GP models is intensive, since computing the posterior density, $\pi$, fo...
GPfit: An R package for Gaussian Process Model Fitting using a New Optimization Algorithm
Computer experiments, clustering, near-singularity, nugget
2013/6/13
Gaussian process (GP) models are commonly used statistical metamodels for emulating expensive computer simulators. Fitting a GP model can be numerically unstable if any pair of design points in the in...